1,280 research outputs found

    Status of the W-boson mass averaging project

    Full text link
    We present the current status of the W-boson mass averaging project, an ongoing effort aimed at combining Tevatron and LHC measurements. Methods are presented to accurately evaluate the effect of PDFs and other modelling variations on existing measurements. Based on this approach, the measurements can be corrected to a common modelling reference and to the same PDFs, and subsequently combined accounting for PDF correlations in a quantitative way. We discuss the combination procedure, and the impact of improvements in the theoretical description of W-boson production and decay.Comment: Contribution to the proceedings of the 41st International Conference on High Energy Physics (ICHEP2022), 6-13 July 2022, Bologna, Italy. 6 pages, 4 figure

    How to discover QCD Instantons at the LHC

    Full text link
    The Standard Model of particle physics predicts the existence of quantum tunnelling processes across topological inequivalent vacua, known as Instantons. In the electroweak sector, instantons provide a source of baryon asymmetry within the Standard Model. In Quantum Chromodynamics they are linked to chiral symmetry breaking and confinement. The direct experimental observation of Instanton-induced processes would therefore be a breakthrough in modern particle physics. Recently, new calculations for QCD Instanton processes in proton-proton collisions became public, suggesting sizable cross sections as well as promising experimental signatures at the LHC. In this work, we study possible analysis strategies to discover QCD Instanton induced processes at the LHC and derive a first limit based on existing Minimum Bias data.Comment: Work prepared in the context of the CERN TH workshop "Topological Effects in the Standard Model: Instantons, Sphalerons and Beyond at LHC

    Matrix element corrections in the Pythia8 parton shower in the context of matched simulations at next-to-leading order

    Full text link
    We discuss the role of matrix element corrections (MEC) to parton showers in the context of MC@NLO-type matchings for processes that feature unstable resonances, where MEC are liable to result in double-counting issues, and are thus generally not employed. By working with Pythia8, we show that disabling all MEC is actually unnecessary in computations based on the narrow-width approximation, and we propose alternative MEC settings which, while still avoiding double counting, allow one to include hard-recoil effects in the simulations of resonance decays. We illustrate our findings by considering top-antitop production at the LHC, and by comparing MadGraph_aMC@NLO predictions with those of POWHEG-BOX and standalone Pythia8.Comment: 16 pages, 9 figure

    A description of the Galactic Center excess in the Minimal Supersymmetric Standard Model

    Get PDF
    Observations with the Fermi Large Area Telescope (LAT) indicate an excess in gamma rays originating from the center of our Galaxy. A possible explanation for this excess is the annihilation of Dark Matter particles. We have investigated the annihilation of neutralinos as Dark Matter candidates within the phenomenological Minimal Supersymmetric Standard Model (pMSSM). An iterative particle filter approach was used to search for solutions within the pMSSM. We found solutions that are consistent with astroparticle physics and collider experiments, and provide a fit to the energy spectrum of the excess. The neutralino is a Bino/Higgsino or Bino/Wino/Higgsino mixture with a mass in the range 849284-92~GeV or 879787-97~GeV annihilating into W bosons. A third solutions is found for a neutralino of mass 174187174-187~GeV annihilating into top quarks. The best solutions yield a Dark Matter relic density 0.06<Ωh2<0.130.06 < \Omega h^2 <0.13. These pMSSM solutions make clear forecasts for LHC, direct and indirect DM detection experiments. If the MSSM explanation of the excess seen by Fermi-LAT is correct, a DM signal might be discovered soon.Comment: Large extension of previous paper: 2 more solutions found in the MSSM (Bino-Higgsino, Bino-Wino-Higgsino into WW and Bino into ttbar), added description on extra fit uncertainties, added description on flavor observables, added discussion on dwarf limit

    LICIACube on DART Mission: An Asteroid Impact Captured by Italian Small Satellite Technology

    Get PDF
    In the frame of the Planetary Defense program, NASA developed the Double Asteroid Redirection Test (DART) mission and the Italian Space Agency joined the effort. DART’s spacecraft will act as a kinetic impactor by deliberately crashing into the moonlet of Didymos binary system (i.e. Didymos-B) while the effects of the impact will be observed by a small satellite, the Light Italian CubeSat for Imaging of Asteroid (LICIACube) and ground-based telescopes. LICIACube, an Italian Space Agency (ASI) mission, will fly with a relative velocity of approximately 6.5 km/s and it will document the effects of the impact, the crater and the evolution of the plume generated by the collision. LICIACube will have to maintain the asteroid\u27s pointing at an angular speed of approximately 10 deg/s to fly-by the asteroid close to the Didymos-B surface. The images acquired by LICIACube will be processed onboard through the autonomous navigation algorithm to identify the asteroid system and control the satellite attitude. They will also help the scientific community and provide feedback to the Planetary Defense program, pioneered by the Space Agencies. This deep-space mission is based on a small scale but highly technological platform, whose development is involving both the Italian technical and scientific community

    Probing the weak mixing angle at high energy

    Full text link
    The weak mixing angle is a probe of the vector-axial coupling structure of electroweak interactions. It has been measured precisely at the ZZ-pole by experiments at the LEP and SLD colliders, but its energy dependence above MZM_Z remains unconstrained. In this contribution we propose to exploit measurements of Neutral-Current Drell Yan at large invariant dilepton masses at the Large Hadron Collider, to determine the scale dependence of the weak mixing angle in the MS\overline{MS} renormalisation scheme, sin2θwMS(μ)\sin^2 \theta_w^{\overline{MS}}(\mu). Such a measurement can be used to test the Standard Model predictions for the MS\overline{MS} running at TeV scales, and to set model-independent constraints on new states with electroweak quantum numbers. To this end, we present an implementation of sin2θwMS(μ)\sin^2 \theta_w^{\overline{MS}}(\mu) in the POWHEG-BOX Monte Carlo event generator, which we use to explore the potential of future analyses with the LHC Run~3 and High-Luminosity datasets. In particular, the impact of the higher order corrections and of the uncertainties due to the knowledge of parton distribution functions are studied.Comment: Presented at DIS2023 - XXX International Workshop on Deep-Inelastic Scattering and related subject

    First identification of porcine parvovirus 3 in a wild boar in Italy by viral metagenomics – Short communication

    Get PDF
    Metagenomic analysis revealed the presence of porcine parvovirus 3 (PPV3) in the pool of the internal organs of a wild boar found dead in Southern Italy. Phylogenetic analysis based on the complete coding sequences showed that the newly detected virus is most closely related to those found also in wild boars in Romania during 2010–2011. Even though the death could not be associated with this virus, PPV3 could have contributed to lowering the host’s immunological defences

    LICIACube Mission: The Fastest Fly-By Ever Done by a CubeSat

    Get PDF
    As SmallSats are gathering an ever-increasing importance for all types of space missions, they are asked more often to operate in harshest environments and to complete the most complex tasks. One of these demanding technical challenges arises in the frame of the planetary defense. Space missions towards asteroids have garnered the due attention in recent years and, in this regard, NASA has developed the Double Asteroid Redirection Test (DART) mission, in which the Italy will lend its contribution. While DART acts as a kinetic impactor deflecting the orbit of the asteroid Dimorphos, the moon of the targeted binary system Didymos, the Light Italian CubeSat for Imaging of Asteroid (LICIACube) collects and gathers valuable images of the effect of the DART impact on the rocky body. LICIACube will allow to study the structure and evolution of the ejecta plume resulting from the impact, and to model both impacted and non-impacted sides of Dimorphos. LICIACube is an Italian Space Agency (ASI) project, whose design, integration and testing have been assigned to the aerospace company Argotec. The scientific team is enriched by University of Bologna team, supporting the orbit determination and the satellite navigation, Polytechnic of Milan, for mission analysis support and optimization and INAF (National Institute of Astrophysics), which provides support in the scientific operations of the satellite, instrument calibrations and data exploitation. This work focuses on the fly-by of LICIACube which will be accomplished using the imaging capabilities provided by theArgotecHAWK-6 platform and by the autonomous navigation system. In order to acquire high-resolution images, LICIACube approaches Dimorphos at a relative distance of 55km. The very close fly-by, the high relative velocity of ∼7 km/s with respect to the asteroid and the need to keep LICIACube camera pointed at Dimorphos make the mission very challenging. In addition, since the binary asteroid system is ∼10 million kilometers away from Earth, the fly-by has to be performed with no real time commanding. As a result, LICIACube shall be able to autonomously analyze all information from its sensors to track the asteroid. The evaluation and subsequent solutions to this problem are presented in this paper, as well as a unit-level description of the parts included in the autonomous navigation system. Finally, an overview of the verification of both unit-level and system-level strategies is outlined

    CATTO: Just-in-time Test Case Selection and Execution

    Get PDF
    Regression testing wants to prevent that errors, which have already been corrected once, creep back into a system that has been updated. A naïve approach consists of re-running the entire test suite (TS) against the changed version of the software under test (SUT). However, this might result in a time-and resource-consuming process; e.g., when dealing with large and/or complex SUTs and TSs. To avoid this problem, Test Case Selection (TCS) approaches can be used. This kind of approaches build a temporary TS comprising only those test cases (TCs) that are relevant to the changes made to the SUT, so avoiding executing unnecessary TCs. In this paper, we introduce CATTO (Commit Adaptive Tool for Test suite Optimization), a tool implementing a TCS strategy for SUTs written in Java as well as a wrapper to allow developers to use CATTO within IntelliJ IDEA and to execute CATTO just-in-time before committing changes to the repository. We conducted a preliminary evaluation of CATTO on seven open-source Java projects to evaluate the reduction of the test-suite size, the loss of fault-revealing TCs, and the loss of fault-detection capability. The results suggest that CATTO can be of help to developers when performing TCS. The video demo and the documentation of the tool is available at: https://catto-tool.github.io/acceptedVersionPeer reviewe
    corecore